
Accelerating All-Electron Ab initio Simulation of Raman Spectra
for Biological Systems

Honghui Shang∗
SKL of Computer Architecture,

Institute of Computing Technology,
Chinese Academy of Sciences, UCAS

Beijing, China
shanghonghui@ict.ac.cn

Fang Li∗
National Supercomputer Center in

Wuxi
Wuxi, China

38349735@qq.com

Yunquan Zhang
SKL of Computer Architecture,

Institute of Computing Technology,
Chinese Academy of Sciences, UCAS

Beijing, China
zyq@ict.ac.cn

Ying Liu
SKL of Computer Architecture,

Institute of Computing Technology,
Chinese Academy of Sciences

Beijing, China
liuying2007@ict.ac.cn

Libo Zhang
National Supercomputer Center in

Wuxi
Wuxi, China

zlb03@hotmail.com

Mingchuan Wu
SKL of Computer Architecture,

Institute of Computing Technology,
Chinese Academy of Sciences, UCAS

Beijing, China
wumingchuan@ict.ac.cn

Yangjun Wu
SKL of Computer Architecture,

Institute of Computing Technology,
Chinese Academy of Sciences, UCAS

Beijing, China
wuyangjun21@163.com

Di Wei
Tsinghua University

Beijing, China
weid20@mails.tsinghua.edu.cn

Huimin Cui
SKL of Computer Architecture,

Institute of Computing Technology,
Chinese Academy of Sciences, UCAS

Beijing, China
cuihm@ict.ac.cn

Xin Liu
National Supercomputing Center in

Wuxi
Wuxi, China
yyylx@263.net

Fei Wang
Tsinghua University

Beijing, China
f-wang20@mails.tsinghua.edu.cn

Yuxi Ye
Yingxiang Gao

Institute of Computing Technology,
Chinese Academy of Sciences

Beijing, China
sdustyeyuxi@163.com
18810616698@163.com

Shuang Ni
University of Science and Technology

of China
Hefei, China

nishuang@163.com

Xin Chen
National Supercomputing Center in

Wuxi
Wuxi, China

ischen.xin@foxmail.com

Dexun Chen
Tsinghua University

Beijing, China
adch@263.net

ABSTRACT
Raman spectroscopy provides chemical and compositional infor-
mation that can serve as a structural fingerprint for various ma-
terials. Therefore, simulations of Raman spectra, including both
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quantum perturbation analyses and ground-state calculations are
of significant interest. However, highly accurate full quantum me-
chanical (QM) simulations of Raman spectra have previously been
confined to small systems. For large systems such as biological ma-
terials, the computational cost of full QM simulations is extremely
high, and their extension to such systems remains challenging. In
the work described here, by employing robust new algorithms and
advances in implementation for the many-core architectures, we
are able to perform fast, accurate, and massively parallel full ab
initio simulations of the Raman spectra of biological systems with
excellent strong and weak scaling, thereby providing a starting
point for applying QM approaches to structural studies of such
systems.
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1 INTRODUCTION
Raman spectroscopy has proved to be a very powerful analytical
tool for the study of biological materials, as it enables effective
extraction of biochemical and structural information. Moreover,
because Raman spectroscopy does not suffer from interference from
water molecules and does not need extensive sample preparation,
its range of applications to biological and biomedical studies is
rapidly growing.

To fully understand the information provided by Raman spec-
troscopy, parameter-free ab initio investigation is essential because
it can provide a direct link between atomic structure and spec-
tral features, thereby providing an invaluable source of structural
information as well as a basis for improving fundamental under-
standing of physical mechanism between atoms. Raman spectra
can be simulated with first-principles approaches using only funda-
mental theories without fitting parameters from experiments. Such
full quantum mechanical (QM)-level simulations of Raman spectra
require density-functional perturbation theory (DFPT) in addition
to density-functional theory (DFT).

However, the computation of Raman spectra has been tradition-
ally limited to small systems and remains challenging for large
systems consisting of up to thousands of atoms. Therefore, a highly
efficient acceleration of ab initio simulation on modern heteroge-
neous many-core supercomputers is urgently needed. Here, we
optimize the FHI-aims [1] software on the new-generation Sunway
heterogeneous many-core supercomputer to address the challenges.

FHI-aims is amassively parallel package for computationalmolec-
ular and materials science. It contains state-of-the-art DFPT com-
putation modules [2, 3] that can directly link physical proper-
ties (phonon dispersions, polarizability, Raman spectra) measured
experimentally with the quantum response or perturbation of the
system. In Ref.[3], the state-of-the-art formalism of the density-
functional perturbation theory has been proposed and implemented
in the all-electron FHI-aims code. Just following the theoretical
framework proposed in Ref. [3], here in this work, we present a
robust new algorithms and implementation advances for FHI-aims
to further scale the full QM calculation of Raman spectra to an
unprecedented level of 3006 atoms on the new-generation Sun-
way heterogeneous many-core supercomputer without introducing
approximations to the QM beyond those inherent to DFT/DFPT
itself.

The major innovations of the current work can be summarized
as follows.

• We propose a customized multi-level parallelization scheme
for Raman spectra simulation with FHI-aims to achieve high
scalability on modern heterogeneous many-core supercom-
puters.
• We use a series of communication optimizations to reduce
the synchronous time.
• We perform direct memory access (DMA) tilings to access
the main memory; we also adopt double buffering to overlap
computations with memory accesses.
• We use register communication and vector instructions on
the Sunway processor to further improve performance.
• We perform a full ab initio simulation of a protein containing
3006 atoms and compare it with experimental results. The
convergence of this calculation has been achieved by using
the self-consistency method.

The optimization methods proposed in this work could be extended
to other DFPT code with the same computational characteristics;
hence, they will be broadly beneficial to the quantum chemistry,
biological, and material science communities.

Based on these developments, highly accurate all-electron ab
initio calculations could be used to understand the structural infor-
mation of biological systems. This work provides starting points for
applying full QM approaches to the structural studies of biological
systems, which allows us to get fundamental understanding about
the interactions between atoms within them.

2 BACKGROUND
2.1 Current state of the art
In order to calculate the physical properties (phonon dispersions,
polarizability, Raman spectra) theoretically, the quantum pertur-
bation form of the Schrödinger equation needs to be solved nu-
merically within the DFPT framework. In the DFPT approach, the
many-body problem is simplified by a single-particle approxima-
tion; then, the single-particle wave functions are expressed as a lin-
ear combination of predefined basis functions. Thus, we can obtain
a matrix equation to be solved numerically. The basis functions can
be plane-waves, as used in Quantum ESPRESSO [4], VASP [5], and
ABINIT [6], or mixed Gaussian and plane-wave as used in CP2K [7].
Although the above plane-wave basis sets can be converged system-
atically, the oscillatory behavior near the atomic nucleus cannot
be accurately represented because of the excessive computational
demands (e.g., 105 plane waves are needed for one core orbital).
As a result, when using these basis sets, pseudization methods [8]
using pseudo-potentials or projector-augmented waves have been
introduced, in which the core potential is replaced by a “fake” one.
Although the pseudo-potentials have been carefully constructed
to keep the valence part consistent with the all-electron method,
core-shell information remains missing. In order to consider the
core and valence states on an equal footing and achieve better
precision compared with the pseudization method [8], all-electron
approaches have been developed, e.g., the all-electron Gaussian
atomic orbital method in Gaussian [9], CRYSTAL [10], and the
all-electron numerical atomic orbitals method in Dmol [11] and
FHI-aims [1].

So far, most DFPT studies of physical properties (e.g., Raman
spectra) have focused on systems with hundreds of atoms because
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of the high computational demands involved. To the best of our
knowledge, the largest full ab initio Raman spectra simulation was
around 400 atoms [12, 13] using a Gaussian basis set. Therefore, a
much larger system is needed to access new physical phenomena.
The fragment method [14–16] was proposed in order to deal with
large systems (around 1000 atoms); however, the fragments need
to be carefully chosen to reduce interpretation errors [17, 18] and
extended to the whole system for the simulation of very delocalized
modes in the supercell [16].

Overall, the current state-of-the-art DFPT methods for large-
scale systems are limited with respect to either accuracy or com-
putational efficiency and scalability. Thus, DFPT calculations on
large-scale systems have been severely limited. This represents the
key bottleneck in simulating the physical properties of real systems.

In this work, we use the DFPT modules implemented in the
all-electron full-potential massively scalable FHI-aims package to
demonstrate that we can perform full QM calculations of Raman
spectra of real biological systems containing up to 3006 atoms
through massively parallel new algorithms on the new-generation
Sunway supercomputer, without introducing approximations to
the QM beyond those inherent to DFT/DFPT itself.

2.2 HPC System and Environment
The new-generation Sunway supercomputer is used for perfor-
mance assessment in this work, which is the successor of the Sun-
way TaihuLight supercomputer. Similar to the Sunway TaihuLight
system, the new Sunway supercomputer adopts a new-generation
of domestic high-performance heterogeneous many-core proces-
sors and interconnection network chips in China.

The new SW processor is designed for massive thread and data
parallelism and to deliver high performance on parallel workloads.
The architecture of the SW26010Pro processor is shown in Fig. 1.
Each processor contains 6 core-groups (CGs), with 65 cores in each
CG, and in total 390 cores. Each CG contains one management
processing element (MPE), one cluster of computing processing
elements (CPEs) and one memory controller (MC). The MPE within
each CG is used for computations, management and communication.
The CPEs is organized as an 8 × 8 mesh (64 cores) and is designed
to maximize the aggregated computing power and to minimize the
complexity of the micro-architecture. The CPEs are organized with
a mesh network to achieve high-bandwidth data communication
(P2P and collective communications) among the CPEs in one CG,
which is called remote scratchpad memory access (RMA).

Each SW26010Pro processor contains 96 GB memory, with 16
GB memory in each CG. The MPE and the CPEs within the same
CG share the same memory which is controlled by the MC. Each
CPE has a 32 KB L1 instruction cache, and a 256 KB scratch pad
memory (SPM, also called the Local Data Memory (LDM)), which
serves the same function as the L1 cache. The data storage space
can also be configured as a local data cache (LDCache) which is
automatically managed by the hardware. Data transfer between
LDM and main memory can be realized by direct memory access
(DMA), and data transfer between LDCache and main memory can
also be realized by conventional load/storage instructions. The CPE
adopts the SW64 instructions and provide 512-bit SIMD support. All
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Figure 1: The architecture of the SW26010Pro processor.

the double precision, single precision, semi-precision floating-point
computation and integer computation are supported.

2.3 The ab initio Raman spectra simulation
In the subsequent section, we present our simulation method for
ab initio Raman spectra using the DFPT method in FHI-aims.

Before the DFPT calculation, the normal DFT calculation needs
to be performed to solve the Kohn–Sham (KS) single-particle equa-
tions:

ĥKSψi =
[
t̂s + v̂ext (r ) + v̂H + v̂xc

]
ψi = ϵiψi , (1)

where the first term on the left-hand side is the KS Hamilton-
ian (ĥKS ), t̂s represents the single particle kinetic operator of the
electron, v̂ext is the (external) electron-nuclear potential, v̂H is the
Hartree potential, and v̂xc represents the exchange-correlation
potential. The KS single-particle states ψi and their eigenener-
gies ϵi can be calculated by solving Eq. (1). If an external electric
field E =

(
ex , ey , ez

)
with strengths eγ is applied to the system, the

KS Hamiltonian gains an additional term, ĥ(1)KS = ĥE = −r · E. Thus,
we obtain a perturbative version of the KS equation, which is called
the Sternheimer equation:

(ĥKS − ϵi ) |ψ
(1)
i ⟩ = −(ĥ

(1)
KS − ϵ

(1)
i ) |ψi ⟩ . (2)

This equation can be solved self-consistently, yielding the corre-
sponding first-order density, where fi denotes the occupation num-
ber of eigenstateψi :

n(r)(1) =
∂n(0)(r)
∂eδ

=
∑
i

fi
[
ψ
∗(0)
i (r)ψ (1)i (r) +ψ

∗(1)
i (r)ψ (0)i (r)

]
. (3)

Then, we obtain the polarizability, which corresponds to the second-
order derivative of the total energy with respect to the external
electric field:

αγ δ =

∫
rγ .
∂n(0)(®r )

∂eδ
d®r . (4)

After the polarizabilities (α ) have been determined using the
DFPT approach, the Raman intensity is proportional to the square
of the third-order derivative of the total energy with respect to both
the external electric field and the atomic displacement:

IRaman(ωp ) ∝ (α
′
i j )

2
p , (5)

where (α ′i j )p =
(
∂αi j/∂Qp

)
=

(∑
I eI ,p∂αi j/∂RI

)
is the deriva-

tive of the ij component of the polarizability with respect to the
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Figure 2: Flowchart for density-functional perturbation the-
ory (DFPT) with the all-electron approach.

displacement of normal phonon mode ep . These derivatives are
computed using finite differences; we evaluate the polarizability
tensor from DFPT [3] at 6N (3N forward and 3N backward) nu-
clear displacements in the unit cell around the equilibrium position,
where N is the number of atoms per unit cell. Then, the above
atomic derivatives are multiplied by the phonon eigenvectors to
give (α ′i j )p for the calculation of Raman intensity.

A flowchart of the DFPT in FHI-aims is shown in Fig. 2. After the
ground state calculation with DFT has been completed, the response
of the overlap matrix is calculated. Then, the DFPT cycle begins,
using an initial guess for the response of the density matrix P (1),
which then allows the respective density n(1)(r) to be constructed.
The associated response of the electrostatic potential V (1)es ,tot (r)
is calculated by solving the Poisson equation in real space. The
response Hamiltonian H (1) is calculated with the response density
and potential. In turn, all these ingredients enable us to set up the
Sternheimer equation to get the response density matrix P (1). We
iteratively repeat the DFPT loop until self-consistency is reached,
i.e., until the changes in P (1) become smaller than a user-defined
threshold. Finally, the physical properties are evaluated using the
converged response density matrix. It should be noted that, we
speedup the convergence of the DFPT calculation with the direct
inversion of the iterative subspace (DIIS) method [19], which is
used to find a good approximation of the final solution as a linear
combination of a set of trial vectors generated during an iterative
solution of a problem.

Figure 3: Three-dimensional illustration of the grid distribu-
tion of the hydrogen molecule (H2). The integration points
are distributed into batches, which are labeledwith different
colors.

The load balancing method to 
distribute the integration points

Batches for MPI
Athread decomposition
over CPEs

Prepare Geometries

Raman Spectra
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（1） The first-level parallel (2) The second-level
parallel

(3) The third-level
parallel

Proc 1

Proc 2

Proc 3
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Figure 4: Three-level parallelization strategy for Raman
spectra simulation with density-functional perturbation
theory (DFPT). (1) The first-level parallel is over different
geometries. (2) Process-level parallelization for grid integra-
tion, distributed over processed and labeled with different
colors. (3) Thread-level parallelization for grid integration;
the batches are then distributed on the threads to provide
many-core acceleration.

3 INNOVATIONS
3.1 All-electron grids and the 3 level

parallelization strategy
FHI-aims uses all-electron all-potential numerical atomic basis
functions to achieve high-precision results. In this scheme, the
all-electron atomic orbitals are discretized using an atom-centered
grid [20], as illustrated in Fig. 3, in order to treat all-electron full-
potential systems where the integrand is dominated by cusps at
atomic nuclei. This atom-centered grid is first partitioned for each
atom, and then the single-center (atom) grids are further separated
into radial and angular parts, such that radially the atom-centered
grid consists of several spherical integration shells with radial inte-
gration weights wrad [1, 21]. On these shells, angular integration
points are distributed such that spherical harmonics up to a certain
order can be integrated exactly using the Lebedev grids[22], with
angular integration weights wanд . In this work, all the perturbation
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properties are calculated within such discretized three-dimensional
physical grids, which are suitable for massively parallel implemen-
tations.

In order to partition non-even grid meshes in an efficient way,
the grid-adapted cut-plane method is used to form batches [23], as
indicated by the different colors in Fig. 3. The procedure to obtain
batches is as follows: first, the centers of mass for all points are
computed; second, the direction of the cut-plane is determined by
computing the normal of the plane; third, the position of the cut-
plane is computed to divide all the points into two even-sized sets,
and the full points are split into two subsets (batches) using the
cut-plane. The above procedure is repeated until all the batches are
the desired size (around 100 to 300 points per batch).

The load balancing for integration is achieved by eventually
distributing the integration points over theMPI processes, as shown
in Algorithm 1. The batches/grids are distributed according to the
current summation of the points in each process; the new batch is
always sent to the process with the minimal number of points. In
this way, load balancing for grid integration is achieved. During
an integration calculation, e.g., that of the response Hamiltonian
matrix, each batch is calculated locally for one part of the matrix
element, and finally the matrix elements from all processes are
combined.

Algorithm 1 Load-balancing method to distribute integration
points.
In:
nbatches: total number of batches in the integration
nproc: total number of MPI processes

1: for i ← 1,nbatches do
2: for j ← 1,nproc do
3: update the total number of points N j

points in the jth

process
4: end for
5: find the minimal N jmin

points and label the jmin process
6: add all points in the batch i to the jmin process
7: end for

Three levels of parallelization are used for Raman spectra cal-
culations. As shown in Fig. 4, the calculation of the polarizabil-
ity can be performed in an embarrassingly parallel manner with
different geometries, that is, the first level of parallelization. As
no communication between the polarizability calculations is re-
quired, we split the whole CPU pool into different sub-groups and
sub-communicators. Within each sub-group, the polarizability is
calculated with the DFPT method. Within each DFPT calculation,
another two levels of parallelization have been adopted for calcula-
tion of the numerical integration. The first level of parallelization for
DFPT is performed over the batches, which are distributed across
all MPI processes. This enables good parallel scalability using the
adapted batch distribution algorithm to achieve load balance. The
second level of parallelization for DFPT is again performed over
the batches within one process. Acceleration on threads can further
improve the performance.

3.2 Optimization of the response density and
response potential

The response density can be written as the following matrix multi-
plication:

n(1)(r) =
∑
µ ,ν

P
(1)
µ ,ν χ

(0)
µ (r)χ

(0)
ν (r), (6)

where P (1)µm,νn is the response density matrix and χ (0)ν is the wave
function; µ,ν refer to the atomic orbit index.

The corresponding response potential (V (1)(r)) can be evaluated
from the electronic response density (n(1)(r′)) by the following
integration:

V (1)(r) =
∫

dr′
n(1)(r′)
|r − r′ |

, (7)

which is equivalent to the solution of the Poisson equation▽2V (1)(r) =
−4πn(1)(r).

The response potential can be evaluated with the multipole
Ewald [24] method and can be written as

V (1)(r ) = VMP(r ) +V Ewald
real (r ) +V

Ewald
recip (r ).

(8)

We have ported the computation kernels of both the response
density and response potential into the new-generation Sunway
processor. As the calculation of the response density and response
potential are distributed over the grid points, there is no communi-
cation between the processes and threads during the computation.
We then perform DMA tilings to efficiently access the main mem-
ory; we also adopt double buffering to overlap the computations
with memory accesses. In the following, we use the calculation of
the response potential to demonstrate our optimizations.

3.2.1 Static loop tiling. Loop tiling is an important transformation
for exploiting the spatial and temporal locality of data accesses in
loop nests. Previous work [25–28] has demonstrated the loop tiling
model for such scratch-pad memory (SPM)-based architectures. The
calculation of the response potential contains two kernels, with
kernel1 calculating potential in real-space (VMP(r )+V Ewald

real (r )) and
kernel2 (V Ewald

recip (r )) updating potential in reciprocal-space. There-
fore, we apply loop tiling for the two kernels individually.

For kernel1, we allocate 128KB SPM and apply static loop tiling
to keep the blocks of regularly access the arrays, e.g. coord , as
shown in Figure 5.

kernel2 is more complicated, as it involves both regular accesses,
e.g., ′electrostatic coe f ′ which refers to the electric-static potential
related coefficients, and irregular accesses, e.g., the result of com-
plex multiply of dimension x and y (WPxy ). Therefore, we allocate
60KB SPM for regularly accesses, by applying static loop tiling,
and allocate the remaining SPM to the irregularly accessedWPxy
(WPxy [k_points_es[1][n] × k_pointsmax + k_points_es[0][n]].

Although the access ofWPxy is irregular from the kernel side,
but we can leverage the cross-host-kernel analysis [29] approach
to determine its subscript. In particular, we can derive that the two-
dimensional k_points_es is used to traverse the reciprocal space
thus the access ofWPxy is continuous. Therefore, after the cross-
host-kernel analysis is performed, we can use static tiling for the
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128 KB for loop tiling
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Figure 5: The illustration of loop tiling.

irregularly accessed arrayWP to fit each tile into the remaining
SPM space.

3.2.2 Double buffering. Having determined the loop tiling strat-
egy to utilize the on-chip SPM efficiently, we need to efficiently
fetch data from the main memory to the SPM. A computing pro-
cessing element (CPE) has two execution pipelines (P0 and P1).
P0 supports scalar and vectorized computing operations of both
floating-point and integer types, whereas P1 supports scalar and
vectorized data load/store, compare and jump operations, and scalar
integer operations. The double pipelines provide an opportunity
for the overlapping of data access and computation operations [30].
For this purpose, we leverage double buffering [31] to overlap the
data transfer and the on-chip computation.

The double buffering process is shown in Fig. 6. When dou-
ble buffering is not used, the data fetching and computation are
performed in a sequential way, as shown in the top panel of the
figure. By comparison, we introduce two equal-sized SPM buffers,
as shown in the bottom panel of Fig. 6; thus, the computation in
one buffer and the DMA data fetching to another buffer can be
executed simultaneously.

3.2.3 Vectorization. To further improve the computation efficiency
of CPEs, response potential calculation exploits the vectorization
opportunity to the functions in kernel1, e.g., cubic spline interpola-
tion (CSI).

Algorithm 2 Compute multipole component By CSI
1: procedure CubicSpline(spline for electrostatic potential spl )
2: prefetch si/j/k/l through DMA(spl )
3: t1 ← i_r_loд
4: t2 ← i_r_loд × i_r_loд
5: t3 ← i_r_loд × i_r_loд × i_r_loд
6: for all n ← 0, l_h_dim do
7: multipole_component ← si + sj × t1 + sk × t2 + sl × t3
8: end for
9: end procedure

Sync

P0

P1

Compute on 
Buffer A

Wait for
Computation

Transfer into 
Buffer A

Wait for
Transfer

(a) Single -Buffering

(b) Double -Buffering

Compute on 
Buffer B

Transfer into
Buffer B

Sync

Sync A

P0

P1

Compute on 
Buffer A

Transfer into 
Buffer A

Sync B

Figure 6: The illustration of double buffering optimization.

d0 =s i＋sj × t1

d1 = d0＋sk × t2

d2 = d1＋sl × t3

spl0spl

Vd0 = simd_vmad(Vsj, Vt1, Vsi)

Vd1 = simd_vmad(Vsk, Vt2, Vd0)

Vd2 = simd_vmad(Vsl, Vt3, Vd1)

Scalar Form Vectorization Form

spl1 spl2 spl3 spl4 spl5 spl6 spl7

Figure 7: The illustration of vectorization for the CSI func-
tion.

The function of CSI is to calculate multipole_component, as
shown in Algorithm 2. In particular, each spline interval pair main-
tains the its own spline parameters, and performs an element-wise
computation to the spline array in the innermost loop nest. There-
fore, the innermost loop nest can be vectorized, as shown in Figure 7,
which compares the scalar and vector operations for the cubic spline
interpolation. By employing the 512-bit SIMD operations, we can
exploit data-level parallelism and completes the computation for 8
splines in one iteration.

3.3 Optimization of the response Hamiltonian
The calculation of the response Hamiltonian is an integration over
the grid as follows:

H
(1)
µ ,ν =

∫
χµ (r)ĥKS χν (r)dr. (9)

After evaluating the integration over every CPE, the Hamiltonian
elements are summed up using a large array reduction, which can
be written as follows:

arr [idx]+ = val, (10)

where arr is a large array, and val is irregularly distributed. In
practical applications, the shape of the above reduction operation
will often occur; because the capacity of local data memory (LDM)
is limited, the size of array arr exceeds the LDM capacity, and the
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traditional specification method is no longer applicable. However,
if arr units in main memory are updated directly, write conflicts
between CPEs will occur, and CPE locks need to be used to ensure
that the write operation is correct. In this case, 64 CPEs contend
for the same lock and arr to access main memory directly, which
can seriously affect the performance of the reduction operation.
Therefore, we designed an efficient distributed reduction based on
the RMA communication mechanism between CPEs. The principle
of this method is as follows: the large array arr that needs to be con-
tracted is divided into 64 pieces of data, and 64 CPEs are responsible
for the contracted operation for each piece of data, respectively.
Each CPE applies a temporary buffer bu f on LDM to buffer the
large data blocks for which it is responsible. Besides, each slave
core creates 64 send buffer units (denoted S0, S1, ... , S63) and 64
receive buffer units (denoted R0, R1, ... , R63), which are used to send
and receive the RMA messages of 64 slave cores corresponding to
the reduction operation, respectively. The reduction operation is
performed as follows.
• Step 1: According to the current idx value, calculate the
location of the element to be updated in the CPE managed
data interval (assuming the destination CPE ID is n), and
then cache the reduction value and the reduction operator
to the local sending cache of the corresponding CPE’s buffer
unit Sn .
• Step 2: Check whether the sending buffer unit Sn is full. If
so, send the contents of Sn to CPE n using RMA, and reset
the sending buffer unit Sn .
• Step 3: Poll to process its own receiving buffer unit. If valid
data is found in the receiving buffer unit, the reduction value,
location, and other information of the receiving buffer unit
will be resolved.
• Steps 4 and 5: If the original data of the reduction location are
found to have been buffered into bu f , the update operation
will be performed directly; otherwise, the buffered bu f data
will be brushed back to main memory first, and then the
required data fragments will be buffered into bu f with DMA.

This algorithm cleverly utilizes the idea of cache references to map
the big data that are waiting for reduction into blocks in LDM, and
then uses an RMA communication mechanism between CPEs to
aggregate and batch the reduction information, so that the com-
munication bandwidth between CPEs can be efficiently utilized.
This method has been integrated into the Sunway-OpenACC. The
performance of the calculation of the Hamiltonian has been greatly
improved by using this method to solve the discrete reduction
problem of the response Hamiltonian for large arrays.

3.4 Optimization of the MPI Allreduce
operation

For high-efficiency implementation of MPI Allreduce with large
amounts of data, it is usually necessary to take into account both
communication and calculation performance. The “Reduce-Scatter
followed by Allgather" is a typical method, it reduces the total com-
munication amount, while calculation is both overlapped within
communication and parallelized among the MPEs during the pro-
cess of “Reduce-Scatter" as the data are divided into blocks. How-
ever, this implementation involves two main challenges. On the one
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Figure 8: Schematic diagram of large arrays reduction algo-
rithm.

hand, as the length of data increases, the proportion of calculation
continues to increase, and it becomes difficult to completely hide
the calculation. On the other hand, synchronous mode in which the
MPE is responsible for communication or task scheduling while the
SPE is responsible for calculation, may causes idleness of the CPE ,
that the powerful computing capability cannot be fully utilized.

In order to overcome these problems, we propose a MPI Allre-
duce optimization method integrating heterogeneous architecture
contrary to large amounts of calculation. This method combines
aggregation of memory access and concurrent computing of the
CPEs to accelerate Allreduce, avoid idle resources in synchronous
execution mode, and implement deep integration of Allreduce and
heterogeneous architecture. When the amount of data is relatively
small, the idle CPEs directly access main memory for calculation,
effectively utilizing the concurrent computing capabilities. When
the amount of data is large, the local memory of the CPE (the pri-
vate memory of each CPE with low capacity but fast speed, referred
to as LDM) is introduced, into which the data located in the main
memory are read in batches, followed by concurrent computing;
the results are then written back to main memory. Different meth-
ods are adopted, mainly owing to the startup overhead of batch
transmission. Direct use of fine-grained memory access under small
data volume conditions can avoid the startup overhead of batch
transmission. Using batch transmission in the case of a large data
volume takes advantage of the bandwidth of main memory and
improves the execution efficiency of large amounts of access from
the CPEs. Algorithm 3 shows pipelined concurrency of batch trans-
mission and calculation. This method is based on the asynchronous
batch transmission function of the CPE (lines 10, 11, 21, 22, 24, 36),
which uses a “reply word”; every time data transmission is com-
pleted, the value of the reply word will be increased by 1. Moreover,
a double buffer mode is needed to achieve pipelined concurrency.
Based on the value of the reply word (lines 17, 30), the reading and
writing of the two (A/B) buffers can be accurately scheduled. As
the Allreduece operation needs to read both the source space and
the destination space, calculate them, and then write the results
back into the destination space, the occupied buffer of LDM space
needs to be divided into four parts (line 3), of which blocks 0 and 1
are used as buffer A (line 6), and blocks 2 and 3 are used as buffer
B (line 7). Through asynchronous batch transmission, the read of
buffer B (lines 21, 22) and the calculation of buffer A (line 23) are
overlapped, thereby hiding the overhead of the calculation of buffer
A.
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The above optimization can efficiently use idle computing ca-
pability in synchronous concurrency mode, so as to accelerate the
calculation of Allreduce collectives. Moreover, pipelined concur-
rency of batch transmission and calculation can fully hide the over-
head of calculation and can effectively improve the performance of
reduction collectives.

Algorithm 3 Pipelined Calculation on CPEs for MPI Allreduce.
In: Src , Dst , Dtype , Cnt , Op, Ldm_bu f , Ldm_bu f _sz
Out: Dst
1: function Reduce_local
2: (Src,Dst,Dtype,Cnt,Op, Ldm_bu f , Ldm_bu f _sz)
3: blk_sz ← Ldmbu f _sz/4/sizeo f (Dtype) ∗ sizeo f (Dtype)
4: blks ← Cnt ∗ sizeo f (Dtype)/blk_sz
5: rply ← 1
6: cur ← Ldm_bu f
7: next ← Ldm_bu f + 2 ∗ blk_sz
8:
9: if blks then
10: cpe_memcpy_in_async(cur ,Dst,blk_sz,&rply)
11: cpe_memcpy_in_async(cur +

blk_sz, Src,blk_sz,&rply)
12: trans f erred ← trans f erred + blk_sz
13: i ← i + 1
14: end if
15:
16: while trans f erred < blks ∗ blk_sz do
17: while rply < 3 ∗ i do
18: end while
19: tmpdst ← Dst + trans f erred
20: tmpsrc ← Src + trans f erred
21: cpe_memcpy_in_async(next, tmpdst,blk_sz,&rply)
22: cpe_memcpy_in_async(next +

blk_sz, tmpsrc,blk_sz,&rply)
23: Op(cur , cur + blk_sz,blk_sz/sizeo f (Dtype))
24: cpe_memcpy_out_async(tmpdst −

blk_sz, cur ,blk_sz,&rply)
25: trans f erred ← trans f erred + blk_sz
26: i ← i + 1
27: next ↔ cur
28: end while
29:
30: while rply < 3 ∗ i do
31: end while
32:
33: if blks then
34: Op(cur , cur + blk_sz,blk_sz/sizeo f (Dtype))
35: tmpdst ← Dst + trans f erred
36: cpe_memcpy_out(tmpdst − blk_sz, cur ,blk_sz)
37: end if
38:
39: end function

Tempbuf Dest

OP

① 

② 

③ 

CPE

MPE

IDLE

Tempbuf Dest
① ⑤ 

CPE

MPE

…… …… …… …… OP

② ② 

③ 

④ 

Before After

Figure 9: The optimization for the MPI Allreduce operation
on the heterogeneous many-core architecture.

3.5 Portability of Our Optimizations
The multi-level parallelization scheme is general so it can be ap-
plied to other platforms. The loop tiling is exploited to optimize
bandwidth, in order to extend the tiling strategies for other many-
core architectures not supported DMA, dynamic tiling might be
triggered to adjust tile sizes at runtime for irregular memory ac-
cesses to boost performance. Our vectorization is also portable
to any platform with SIMD unit. We only need to re-design the
mask code splicing by the platform’s SIMD shuffle instruction and
vector width. The double buffering method can be applicable and
beneficial on other manycore architectures.

4 EVALUATION
4.1 Simulation Validation
The dielectric constant is a measure of the amount of electric po-
tential energy, in the form of induced polarization that is stored in
a given volume of material under the action of an electric field, it is
directly related with the polarizability, which is defined as

ε∞γ δ = δγ δ +
4π
Vuc

αγ δ . (11)

in which, Vuc refers to the volume of the unit cell.
In order to validate our implementation, we have calculated the

dielectric constant of 19 zinc blende semiconductors. Here a com-
parison of our results with plane wave codeQuantum Espresso.
In all cases, the calculations were performed for the equilibrium
geometry determined by relaxation (maximum force < 10−4 eV/Å),
at LDA level of theory using fully converged numerical param-
eters, i.e., by using 16×16×16 k-points in the primitive unit cell,
"tier 2" basis sets and so called “really tight” defaults for the inte-
gration grids in FHI-aims; And by using an energy cut-off of 50
Hartree for the truncation of the plane wave basis set, and Troullier-
Martins norm-conserving pseudopotentials (without nonlinear core
corrections) in Quantum Espresso. Fig. 10 illustrates the excellent
agreement between our results and the one given by Quantum
Espresso code, the mean relative error for the dielectric constants
between FHI-aims and Quantum Espresso is within 1% for the 19
examples. It should be noted that, the above good agreement comes
from only considering s and p electrons as valence shells that the
pseudopotential can work well. When we consider the system con-
taining d electrons and include it in the calculation, such as GaSb,
the all-electron scheme can improve the calculation accuracy by
15% compared with the pseudopotential method [3].



Accelerating All-Electron Ab initio Simulation of Raman Spectra
for Biological Systems SC ’21, November 14–19, 2021, St. Louis, MO, USA

Figure 10: The comparison of the high-frequency dielec-
tric constants of various semiconductors between our all-
electron approach and the results calculated with Quantum
Espresso.

To further validate our simulations, we turn to a comparison of
our results for the Raman spectrum of the H2Omolecule with those
obtained using the Gaussian code. Fig. 11 shows our computed
harmonic Raman frequency and intensity of H2O (tight, tier3),
compared with the values calculated with Gaussian (aug-cc-pVDZ).
Both spectra are calculated with local density approximation (LDA)
functions. Our results for the Raman spectrum of the H2Omolecule
in the O–H stretching region show very good agreement with those
from Gaussian, and the relative errors are within 0.5%.
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Figure 11: Comparison of the frequencies and intensity of
Raman spectra between FHI-aims and Gaussian. The relative
errors between FHI-aims (tier2) and Gaussian (aug-cc-pVDZ)
are within 0.5% in this example. The units of frequency and
intensity are cm−1 and Å4/amu, respectively

Table 1: Case configurations for evaluation. Here the silicon
solid is use.

case name grid basis average points per batch

Si solid

#1 35836 18 100
#2 56860 18 100
#3 35836 36 100
#4 56860 50 100
#5 35836 36 200
#6 35836 36 300
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Figure 12: The performance comparison among different op-
timization steps for the response potential (V1) calculation.

4.2 Performance Speedup Results
First we use the calculation of response potential as the example
to illustrate the performance improvements for different kinds of
optimization methods on one new Sunway node which contains 390
cores (6MPEswith 384 CPEs). Fig. 12 gives a comparison of different
versions optimized by a series of methods. We use different settings
(as shown in Tab. 1) to calculate solid silicon that the number of
grid and the number of basis are changed. First, the DMA loop
tiling method could gain the performance improvements, ranging
from 10x to 15x by increasing the data locality. Second, double
buffering applied after loop tiling is introduced to overlap the data
fetching to SPM and the computation, the performance results
shows that when double buffering is enabled, all the data fetching
operations can be completely over-lapped with the computation, so
we make the performance improvements to 16x. Third, we applied
vectorization to further improve the instruction level paralelism,
finally we achieve a performance speedup around 20x compared to
the original MPE version.

Fig. 13 gives the speedups of different DFPT kernels within one
Sunway processor with 6 CG. The performance speedups refer to
the calculationwith oneMPE.We also use 6 examples of silicon solid
with different parameters (e.g. number of basis sets and grid points
as shown in Tab. 1) to perform the DFPT calculation. As shown in
Fig. 13, the acceleration of response potential (V (1)) does not depend
on the number of basis function, since it only contains the grid
points calculation, so calculation with denser grid points(#2 and #4)
give about 7% higher speedup than the others. On the other hand,
the speedups of response density (n(1))/response Hamiltonian (H (1))
both depend on the basis set and grid point. Taking n(1) as an
example, the highest speedup ratio appears at #4 with the largest
number of grid points (56860) and number of basis set (50). It is
also found that the speedup also relate to the average number of
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Figure 13: The performance speedups of different kernels
within the DFPT calculation. The blue/yellow/red bars refer
to the speedup of the response potential (V1)/response den-
sity (n1)/response Hamiltonian (H1) respectively.
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Figure 14: The performance comparison of the total time per
DFPT iteration for RBD protein contained 3006 atoms.

the points per batch, by comparing the results of #3 #5 #6, we can
see 200 points per batch show the highest acceleration.

In Fig. 14, we further evaluate the performance improvements
over the CPU calculations which are performed on Tianhe-2 with
Intel CPU (Xeon E5 2692 V2). We use the receptor binding do-
main (RBD) protein containing 3006 atoms as the example. All
calculations use light settings and the LDA functional in FHI-aims.
Thanks to the innovations in Sec. 3, the DFPT total time per cycle
exhibits an overall 9.7x to 7.8x speedup with the number of process
increasing from 64 to 256 compared with the CPU implementation.

Fig. 15 shows the speedup of the MPI Allreduce optimization
for response potential, the speedup ratio reaches 2.2 to 2.6 when
increasing the MPI processes from 256 to 1024. The increasing of
the speedup radio can be understand as following: Suppose the
data amount is L, and the number of processes is N, then log2 N
times of communication with length of Ł/2i are required during
the implementation of Allreduce. Since the data after each commu-
nication step needs to be calculated, and computation volume is∑loд2N
i=1 L/2i = (1 − 1

N )L, which is increasing when the number of
processes N increases, so the speedup radio will also increase.

In Fig. 16, we compared the DFPT calculation performed with
FHI-aims and Gaussian code. In FHI-aims, we use light setting for
grid integration and tier 1 basis set, for Gaussian, we use Int=FineGrid
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Figure 15: The optimization of the MPI Allreduce time dur-
ing the response potential calculation of RBD protein con-
tained 3006 atoms.
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Figure 16: The performance comparison between FHI-aims
and Gaussian for the time per DFPT iteration with three iso-
lated H(C2H4)nH molecules. All calculation are performed
at Tianhe-2 with 12 processes.

and 6-31G** basis set to keep consistent. All calculation are per-
formed at Tianhe-2 with 12 MPI tasks. We can see that for the DFPT
calculation, FHI-aims is around 2.27x to 1.25x faster compared with
Gaussian when the number of atoms in H(C2H4)nH molecules
changing from 14 to 50. For large systems such as RBD, Gaussian
will run out of memory.

4.3 Scalability Results
In Fig. 17, we measure the runtime and strong scaling for the Raman
spectra calculation of RBD protein complex. In all calculations, each
MPI sub-group was mapped to 256 processes, and the total number
of the polarizabilities are set to be 1175 for the strong scaling cal-
culation. The code shows a good strong scaling performance, that
with the number of the Sunway processes increases from 10,240 all
the way to 300,800 for the calculation (the number of cores chang-
ing from 665,600 to 19,552,000), the parallel efficiency is > 80% with
300,800 processes, with a 25× speedup with respect to the 10,240
processes run.

Figure 18 shows the weak scaling for the Raman spectra calcu-
lation of RBD protein. In order to obtain the weak scaling data,
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Figure 17: The strong scalability for the Raman spectra com-
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Figure 18: The weak scalability for the Raman spectra com-
putation time of the RBD complex contained 3006 atoms.
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we timed both the DFT and DFPT calculation on the RBD protein
complex with an increasing number of the polarizabilities. The Ra-
man spectra calculation code achieves excellent weak scaling which
keeps a high parallel efficiency with the growth of cores. With 2,560
processes, as a reference, we achieves a parallel efficiency of 84.4%
with 300,800 processes (19,552,000 cores).

5 APPLICATIONS
Finally, we demonstrate the DFPT application in the large realistic
biological system. In biological systems, the usage of the Raman
spectroscopy is increasing rapidly [32, 33], because it can provide
the chemical and composition information for proteins in essen-
tially all physical states, it can also probe the structural changes in
proteins resulted from the protein-ligand interactions.

The computations are based on the crystal structure of the RBD
protein from Qihui Wang et al. [34] at a resolution of 2.5 Å, which
protein data bank (PDB) file number is 6LZG. Hydrogen atoms of
the protein (see PDB file 6LZG) were added by using the ambertools.

The ACE2 has been reported to be the cellular receptor for the
SARS-CoV-2 coronavirus, who uses the RBD of the surface Spike
glycoprotein (S protein) to engage ACE2. One of the promising ther-
apeutic strategy is to design high-affinity inhibitors to SARS-CoV-2
Spike RBD to compete with ACE2 binding. The Raman spectrum
of the RBD can thus give the structure information of the protein,
which will allow us to get fundamental understanding about the
interaction between atoms.

The Raman spectra for the RBD protein is calculated with LDA
functional, “light” basis set. The whole Raman spectra and the com-
parison with experimental data is shown in Fig. 19. The smearing
of the theoretical Raman spectra is set to 5 cm−1 expect the spectra
within Amide III zone, which is not smeared in order to illustrate
finer vibrational information. Overall, we can see a good agreement
between the calculated and experimental Raman spectra, although
the intensities have relatively small differ, characteristic patterns
are easily visible. The S-S bond stretching bands are located in the
500-550 cm−1 region, which shows that there are S-S bridges in the
protein, this bands are found in both experimental and calculated
spectrum. The bands near 800 cm−1 observed in the experimental
and theoretical spectrum are the aromatic aminoacids (Tyrosine)
bands, which come from the in-plane breathing mode of the phenol
ring. The Trp/Phe aromatic Raman signal around 1001 cm−1 and
the Trp band at 1112 cm−1 (calculated at 1003 and 1117 cm−1, re-
spectively) are related to the breathing mode of the Phenylalanine,
these distinct spectral features are reproduced well with simula-
tion. The amide III spectral region (1200-1360 cm−1) can be used to
correlated to the amide I band (stretching vibration of C=O ,around
1650 cm−1) in order to get some additional details to the amide I.
The two bands in this amid III region observed in the experimental
measurement with a higher Raman intensity than our calculation,
so does the C=C stretching band. The remaining part of the experi-
mental spectrum with bands at around 1650 cm-1 is also obtained
in our calculation, and we get similar relative intensity of the band
at 1650 cm-1 for the amide I band compared with in the measured
spectrum.

6 CONCLUSION
The innovations realized in this work, make FHI-aims suitable to
the future exascale machines. Three levels of parallelization have
been adopted to utilize the nature of the physical problems and
the many-core architecture. To the best of our knowledge, this
is the first reported quantum perturbation calculation for Raman
spectra that can scale to over nearly ten millions of cores. The multi-
level parallelization scheme for Raman spectra simulation proposed
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Figure 19: The simulated and experimental Raman spec-
tra of the RBD protein, which demonstrate the sensitivity
power of the Raman spectra in probing the protein struc-
ture.

in this work can be straightforwardly extended to other DFPT
codes. The MPI optimizations, double buffering method, vector
instructions method can also be adopted for other DFPT codes with
the similar integration parts (response density, response potential,
response Hamiltonian). Furthermore, the Raman spectra of the
realistic biological system has been demonstrated to open new
perspectives for applying the DFPT in biological systems. This
work has also demonstrated the ability of the quantum mechanics
approaches to simulate the protein system (SARS-CoV-2-RBD ),
which is starting point for using the quantum mechanics method to
probe the structural change in proteins resulted from the protein-
ligand interactions and opens up new possibilities for improving
the accuracy of virtual drug screening.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
All calculations and scalability tests were run with FHI-aims on
the new-generation Sunway supercomputer. In order to perform
the high-frequency dielectric constants calculation with DFPT, the
keyword " DFPT dielectric" needs to be written into control.in; For
the DFPT calculations of the polarizability tensor, the keyword "
DFPT polar_reduce_memory" for finite systems needs to be pre-
sented in the control.in files of FHI-aims. The key algorisms are the
calculations of dielectric constants and polarizability listed above.

As described in the paper, we use the case of
Silicon Solid and RBD, which can be gotten by
https://github.com/mainAIMS/Benchmarks-AIMS.git This
data includes example “RBD” data an "Si_core6" data of different
cases with folder names like n_100_mini, n_100_rt_mini, et,al.

Then you can install the code in the following way: (1) tar zxvf
FHIaims-master.tgz; (2) cd FHIaims-master/src (3) make -f Make-
file.sw -j 8 scalapack.mpi

After compiling the FHI-aims, there will be a binary
file in the FHIaims-master/bin directory, which is called
aims.191127.scalapack.mpi.x

Finally, after finishing the compilation, we can go to the directory
which contains the control file (control.in) and the geometry file
(geometry.in) , and perform the calculation. We can submit the
calculation to the queue using :

bsub -b -m 1 -q q_sw_share -n -share_size 4096 -host_stack 1024
-o output /FHIaims-master/bin/aims.191127.scalapack.mpi.x

Author-Created or Modified Artifacts:

Persistent ID:

https://github.com/aims-for-sc21/aims.git↩→

Artifact name: software, the account username is :

aims-for-sc21↩→

Persistent ID:

https://github.com/mainAIMS/Benchmarks-AIMS.git↩→

Artifact name: input files

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: new Sunway: Each processor contains
6 core-groups (CGs), with 65 cores in each CG, and in total 390 cores.
Each CG contains one management processing element (MPE), one
cluster of computing processing elements (CPEs) and one memory
controller (MC). The MPE within each CG is used for computations,
management and communication. The CPEs is organized as an
$8×8$𝑚𝑒𝑠ℎ (64𝑐𝑜𝑟𝑒𝑠)𝑎𝑛𝑑𝑖𝑠𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑𝑡𝑜𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑡ℎ𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔𝑝𝑜𝑤𝑒𝑟𝑎𝑛𝑑𝑡𝑜𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑡ℎ𝑒𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑜 𝑓 𝑡ℎ𝑒𝑚𝑖𝑐𝑟𝑜−
𝑎𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒.

Operating systems and versions: Sunway customized Linux with
kernel version 3.10.0

Compilers and versions: mpif90

Applications and versions: FHI-aims.191127.scalapack.mpi

Libraries and versions: lapack-v3.8.0, scalapack-v2.0.2
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